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Abstract. Teleoperation has the potential to enable robots to replace
humans in high-risk scenarios and catastrophic events, performing ma-
nipulation tasks efficiently and securely under human guidance. How-
ever, achieving human-like dexterous manipulation remains challenging,
particularly for anthropomorphic hand-arm robotic systems with high
degrees of freedom. Accurately capturing the operator’s motion and pro-
viding real-time intuitive feedback to enhance the sense of telepresence
place substantial demands on human-robot perception and interaction.
Moreover, the inherent physical and functional differences between an-
thropomorphic hand-arm robots and humans pose challenges in ensuring
the accuracy and reliability of dexterous teleoperation. To overcome these
challenges, we present an integrated approach involving an anthropomor-
phic hand-arm robot system, a wearable motion capture and force feed-
back system, and a set of motion mapping and force mapping methods.
We conducted experiments on both simulation and real-world platforms
to evaluate the usability and effectiveness of our proposed approach, with
the results demonstrating significant advancements in achieving human-
like dexterity via teleoperation.

Keywords: Dexterous Manipulation · Teleoperation · Anthropomor-
phic hand-arm robots · Motion mapping · Force mapping.

1 Introduction

Advances in robotics manufacturing and artificial intelligence technologies have
enabled researchers to achieve autonomous dexterous manipulation in anthro-
pomorphic robots[1,2,3,4,5,6]. While offering great potential for solving com-
plex and dexterous manipulation tasks, the unreliability and instability of au-
tonomous learning pose challenges for its application in sophisticated scenar-
ios. To address this, human-like dexterous manipulation via teleoperation has
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emerged as a viable solution, serving as a bridge between humans and robots.
By combining the decision-making experience of human intelligence with the
powerful manipulation capabilities of robots, teleoperation allows robots to ef-
fectively replace humans and perform intricate manipulations in environments
that are either inaccessible or hazardous to human operators. This approach
has found widespread use in various real-world domains, including industrial
production, medical treatment, mining, and explosive ordnance disposal. Never-
theless, achieving human-like dexterous teleoperation in anthropomorphic robots
presents a complex and multifaceted challenge. Precisely capturing human mo-
tion and providing real-time force feedback prove to be demanding tasks. More-
over, the disparities between anthropomorphic robots and humans in physical
aspects such as size, weight, and kinematics, as well as functional aspects such
as sensing, actuation, force, and velocity, further complicate the realization of
seamless teleoperation. Consequently, a comprehensive dexterous teleoperation
system necessitates the careful consideration of three fundamental sub-problems:
how to capture human motion, how to map human motion to the robot effec-
tively, and how to give feedback to the human on the forces perceived by the
robot.

In this paper, we present a comprehensive framework that addresses the
challenges of achieving human-like dexterous manipulation in anthropomorphic
hand-arm robot systems through teleoperation, focusing on the three subprob-
lems mentioned earlier. Firstly, we develop a wearable system utilizing a data
glove and three IMUs (Inertial Measurement Units) to accurately capture hu-
man hand-arm motion. Next, we propose two distinct mapping methods: a hy-
brid mapping approach for hand motion mapping and a motion modification
approach for arm motion mapping. These methods are effective in accurately
translating human motions to the robot. Finally, we introduce a force-feedback
system based on a hand exoskeleton, which utilizes a nonlinear mapping method
to enhance the operator’s sense of immersion by mapping the perceived force
from the robot to the operator.

The subsequent sections of this paper are organized as follows. Sect. 2 pro-
vides a comprehensive overview of related work on motion capture of human
hands, human motion mapping, and feedback in teleoperation. In Sect. 3, we
present the proposed framework for achieving human-like dexterous manipula-
tion via teleoperation. The specific methods utilized, including the hand motion
mapping method, the arm motion mapping method, and the force mapping law,
are detailed in Sect. 4. To validate the effectiveness of the framework, experimen-
tal results obtained from both simulation and real-world platforms are presented
in Sect. 5. Finally, we give a conclusion in Sect. 6.

2 Related Work

2.1 Motion Capture of Human Hands

Capturing human motion, especially human hand motion can be achieved in a
visual way or a haptic way[7].
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Vision-based methods typically rely on camera input to capture motion. Some
works extract motion information, such as wrist pose, hand pose parameters,
hand shape parameters, and keypoint positions, from the visual data[8,9].[8,9].
Still, other works do not focus on specific motion Information but directly pre-
dict the pose of the robot hand that is visually similar to the human hand
pose[10]. Vision-based approaches offer advantages in terms of cost-effectiveness
and ease of deployment but are limited by camera capabilities and algorithms.
Furthermore, the absence of haptic feedback represents a significant drawback.

Haptic-based approaches, on the other hand, rely heavily on wearable de-
vices to estimate human posture and obtain feedback. Data gloves are the most
common type of wearable device, providing information such as the position and
motion of the fingers and the whole hand, as well as haptic feedback information.
Exoskeletons are typically worn on the dorsum and involve rigid links for provid-
ing kinesthetic feedback to the hand. Haptic-based approaches, although more
complex and costly to implement, offer the significant advantage of providing
controllable motion and feedback.

In this work, we target to design a haptic-based system that captures human
hand-arm motion, making teleoperation controllable and realistic.

2.2 Human motion mapping

Mapping human motion onto a hand-arm robot is another key problem in tele-
operation, where the difficulty comes from the mismatch between human and
robot including workspace, configuration, and manipulation resolution[11]. The
problem is commonly decomposed into two parts to be considered: hand-motion
mapping and arm-motion mapping.

The most frequently used methods for hand motion mapping are direct Carte-
sian mapping and direct joint mapping. Direct Cartesian mapping involves scal-
ing, optimizing, or transforming the fingertip positions of the human hand and
leading the robot fingertip to that specified position. This method is applicable
to various robotic hands but is limited to precision grasps. Direct joint mapping
directly employs the corresponding joint values of the human hand to control
the robot hand. This method is intuitive and straightforward but only suitable
for robots with similar kinematics to the human hand. In this work, we aim to
design a hybrid mapping algorithm that combines the advantages of both meth-
ods. This hybrid mapping algorithm is intended to be simpler, more intuitive,
easier to implement, and collision-free compared to previous algorithms[12,13].

In the context of arm motion mapping, two categories can be distinguished:
direct mapping and motion modification[14]. The former directly utilizes the
original human demonstration data (joint angles, positions, trajectories) without
modification, which is simple and intuitive but does not consider the differences
in body structure and size. The latter addresses the variations in body structure
and size by scaling the obtained human position data, resulting in a more rea-
sonable mapping. Therefore, in this work, we employ the motion modification
method to the changes in the human hand position, thus achieving more natural
teleoperation of the robotic arm.
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2.3 Feedback in teleoperation

Feedback is crucial in teleoperation, and while visual feedback is essential for pro-
viding information about the position and objects in the remote environment,
haptic feedback becomes paramount as the robot approaches objects and vision
becomes occluded. Realistic, accurate, and low-delay haptic feedback serves as
a vital source of human-robot interaction information, greatly enhancing the
operator’s sense of immersion. Haptic feedback can be categorized into tactile
feedback, which enables the perception of object texture and shape, and kines-
thetic feedback, which allows for the perception of force and contact. In this work,
we investigate the force-feedback system, where the hand exoskeleton serves as
an interface between the human and the robot.

3 Framework

Our objective is to develop a framework for human-like dexterous manipula-
tion via teleoperation for the anthropomorphic hand-arm robotic system. This
framework empowers operators to perform natural motions, guiding the robot
to execute various intricate manipulations. An overview of the framework is
depicted in Fig.1.

The interaction system serves as the interface between the operator and
the robot, capturing human motions and providing feedback. Human finger mo-
tions and arm motions are measured by a data glove and three IMUs attached
to the upper arm, forearm, and hand, respectively. The estimated angle infor-
mation is converted into position information through forward kinematics. The
hand motion mapping method and the arm motion mapping method are then
employed to determine the hand and arm joint angles of the robot, respectively.

The hand-arm robotic system consists of a robotic arm and a CASIA
Hand, which features 25 joint degrees of freedom and 21 degrees of actuation,
with a force sensor attached to each fingertip. The desired joint angles are ex-
ecuted by the robot controller. During interactions with the environment, force
information is generated and processed according to a specific force mapping
law. This force feedback is naturally conveyed to the operator through the wear-
able hand exoskeleton, enhancing their perception of the robot’s contact forces.

CASIAHand

Robotic Arm
IMUs

Data glove

Hand Exoskeleton

Hand 
controller

Quaternions

Angles

Arm motion 
mapping

Hand motion 
mapping

Force 
mapping law

Desired 
force

Hand-arm Robotic SystemInteraction System

Measured
contact force

Desired arm 
joint angles

Arm 
controller

Desired hand 
joint angles

Data 
collection

Fig. 1. The framework of human-like dexterous manipulation for the anthropomorphic
hand-arm robotic system via teleoperation.
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4 Methods

4.1 Hand Motion Mapping

Our objective is to develop a hybrid mapping method that leverages the advan-
tages of both direct Cartesian mapping and direct joint mapping approaches.
For this purpose, we utilize MANO [15], which represents the human hand with
15 ball joints and 15*3 degrees of freedom. To align it with the structure of the
actual human hand, we simplify the model to have 20 degrees of freedom, with
4 degrees of freedom assigned to each finger. Fig.2(a) shows the differences in
kinematic structure between the simplified MANO model and the CASIA Hand.

Fig. 2. MANO and CASIA Hand.(a)Kinematic structure. (b)Vector group.

Considering the factors of fingertip orientation and distance, joint angle, and
self-collision, we follow DexPilot[16] to formulate the hand motion mapping prob-
lem as a non-linear optimization problem, with the specific objective function:

min

n∑
i=1

w1(di)||vi(qRH
t )− s(di)v̂i(q

MH
t )||2 + w2(di)||q′RH

t − q′MH
t ||+ w3||qRH

t − qRH
t−1||2

(1)
Where qMH

t , qRH
t respectively represent the joint angles of MANO and

CAISA Hand at time t, vi(q
MH
t ) ∈ R3, vi(q

RH
t ) ∈ R3 respectively represent

the vectors obtained by forward kinematics of MANO and CAISA Hand in the
world coordinate system, pointing from one key point to another, as shown in
Fig.2(b). n represents the total number of vectors. Furthermore, di = ||vi(qMH

t )||
and v̂i(q

MH
t ) =

vi(q
MH
t )

||vi(qMH
t )|| . q

′RH
t and q′MH

t are the structurally corresponding

joints in the MANO and CASIA Hand, including the DIP, PIP, and MCP joints
of the index, middle, ring, and little fingers.

The distance coefficient function s(di) is defined as:

s(di) =


η1, di ≤ ε ∧ vi(q

RH
t ) ∈ S1

η2, di ≤ ε ∧ vi(q
RH
t ) ∈ S2

η3, di ≤ ε ∧ vi(q
RH
t ) ∈ S3

αdi, di > ε

(2)

Where ε is the distance threshold parameter, the scaling factor α = 1.5 repre-
sents the difference in size between CASIA hands and MANO, η1 = 1× 10−4m
keeps the thumb fingertip close to the other fingertip during precision grasp,
η2 = 0.025m and η3 = 0.03m force a safe distance between fingertips and be-
tween the neighboring joints to avoid collisions. The weight coefficient function
w1(di) is defined as:
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w1(di) =


µ1, di ≤ ε ∧ vi(q

RH
t ) ∈ S1

µ2, di ≤ ε ∧ vi(q
RH
t ) ∈ S2

µ3, di ≤ ε ∧ vi(q
RH
t ) ∈ S3

µ4, di > ε

(3)

Where µ1 = 45, µ2 = 50, µ3 = 25 and µ4 = 10. The weight coefficient function
w2(di) is defined as:

w2(di) =


λ1, di > ε2 ∧ vi(q

RH
t ) ∈ S1

λ2, di ≤ ε2 ∧ di > ε1 ∧ vi(q
RH
t ) ∈ S1

λ3, di ≤ ε1 ∧ vi(q
RH
t ) ∈ S1

(4)

Where λ1 = 0.1, λ2 = 0.05, λ3 = 0.01, ε1 = 0.02 and ε2 = 0.04. These values are
chosen to ensure reasonableness, considering that precision grasp is more likely
than power grasp when the thumb is too close to the other fingers, and thus the
attention to joint similarity should be reduced. Additionally, we added an L2
normalization term with w3 = 1 × 10−3 to improve smoothness and temporal
consistency.

For implementation, we use Sequential Least-Squares Quadratic Program-
ming (SLSQP) algorithm in NLopt[17] to optimize the above objectives in real-
time.

4.2 Arm Motion Mapping

The arm motion mapping algorithm aims to enable the dexterous robot hand to
replicate the motion of the operator’s hand in Cartesian space, ensuring control-
lability during operation. To simplify the process, we focus only on the hand’s
position and orientation, disregarding the arm shape that aims to maintain sim-
ilarity between the human and the robot. Consequently, it becomes essential to
calculate the relative position and orientation of the human hand based on the
data obtained from the three IMUs. We model the human arm as a 7-degree-

Fig. 3. Diagram of the human arm model.

of-freedom system, with 3 degrees of freedom for the shoulder joint, 1 degree
of freedom for the elbow joint, and 3 degrees of freedom for the wrist joint.
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Three IMUs are attached to the upper arm, forearm, and hand, respectively,
and they are calibrated to the initial state where the arm naturally hangs down
and the palm faces toward the body. As shown in Fig.3, the following variables
are defined:

– The length of each link: upper arm Lu, forearm Lf , hand Lp.
– The quaternion of each link at time t: upper arm Qu

t , forearm Qf
t , palm Qp

t .
– The position of each joint at time t: shoulder joint P s

t , elbow joint P e
t , wrist

joint Pw
t .

– The vector of each link at time t: upper arm vut , forearm vft , hand vpt .

The position of the hand Ph
t at time t is:

Ph
t = P s

0 +Qu
t ∗ vu0 +Qf

t ∗ vf0 +Qp
t ∗ vp0 (5)

Where the operation rule for multiplying a quaternion by a vector is defined as:

Q ∗ v = Im(Q⊗ v ⊗Q−1) (6)

In order to cope with the difference in structure and size between the human
arm and the robotic arm, the changes in the position of the human hand are
modified to yield the target position of the robotic hand.

posTA
t =

[
ρ1 ρ2 ρ3

]
·
(
Ph
t − Ph

0

)
+ posRA

0 (7)

where posTA
t is the target position of the robotic hand at time t, ρ1, ρ2, ρ3 are

scaling factors, and posRA
0 is the initial position of the robot hand.

It is worth noting that the slave arm includes all degrees of freedom of the
robotic arm and two degrees of freedom of the CASIA wrist. We formulate the
arm motion mapping as an optimization problem, the optimization objective is:

minwpos||pos(qRA
t )−posTA

t ||2+wquat(1−
〈
quat(qRA

t ), quatTA
t

〉2

)+β||qRA
t −qRA

t−1||2 (8)

Where qRA
t represents the joint angles of the robotic arm at time t, while

pos(qRA
t ) and quat(qRA

t ) respectively indicate the position and rotation of the
CASIA Hand at time t. It is worth noting that quatTA

t is equivalent to the
previously mentioned Qp

t . ⟨q1, q2⟩ denotes the inner product of the correspond-
ing quaternions. As with the hand motion mapping, the objective function in-
cludes an L2 normalization term to improve smoothness and temporal consis-
tency and likewise optimizes the above objective in real-time using Sequential
Least-Squares Quadratic Programming (SLSQP) algorithms in NLopt[17].

4.3 Force Mapping Law

Force mapping involves transferring the force experienced by the robot’s finger-
tips to the operator’s hands. The level of realism in force transfer directly influ-
ences the operator’s immersion in the task. Although linear mapping is widely
used, it falls short in providing a truly realistic experience to the operator due
to variations in human sensitivity to different forces.

Inspired by [18], we formulate the force feedback model as an exponential
function as follows, making it more sensitive to small forces and less sensitive to
large forces.
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Fig. 4. Diagram of the force mapping law.

FH = σ(−eτF
R

+ ξ) (9)

Where FH denotes the force fed back to the human and FR denotes the force
perceived by the robot, σ = 2, τ = −0.5, ξ = 1. Notably, we have limited the
range of force feedback to ensure comfortable operation.

5 Experiment

5.1 Experimental Setup

The overall experimental setup consisted of :

• The data glove is equipped with 19 optical fibers, 15 of which are attached
to the DIP, PIP, and MCP joints of the index, middle, ring, and little fin-
ger, as well as the IP, MCP, and CMC joint of the thumb, with which the
flexion/extension angles are measured. Additionally, 4 fibers are attached
between each of the five fingers, with which the abduction/adduction angles
are measured.

• A hand exoskeleton is positioned on the dorsum of the hand and is capable
of providing a maximum force feedback of 6.5N at each of the five fingertips.

• Three IMUs are affixed to the upper arm, forearm, and hand. These IMUs
provide orientation information relative to the global coordinate system.
The orientation is represented by quaternions and is based on the three-
dimensional angular velocity, acceleration, and magnetic field.

• A CASIA Hand, with 21 degrees of actuation and 25 human-like degrees of
freedom, including 16 on the fingers, 5 on the thumb, 2 on the palm, and
2 on the wrist. At each fingertip, a Contactile Force Sensor is attached to
provide 3D force information from the slave side.

• A KUKA LBR iiwa with 7 degrees of freedom.

5.2 Simulation Experiments

To empirically validate the effectiveness of the hand motion mapping method,
we present several mappings from MANO to CASIA Hand in Fig.5. The exper-
imental results demonstrate that the method adequately considers factors such
as fingertip position, joint angle, and self-collision, resulting in visually plausible
outcomes.
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Fig. 5. Hand motion mapping results between the MANO and the CASIA Hand.

For further validation, we conducted a comparative evaluation with direct
Cartesian mapping and direct joint mapping in the MuJoCo[19]. This evaluation
is illustrated in Fig.6, where we selected two objects for precision grasp and
power grasp scenarios. The results demonstrate that our method outperforms
both direct Cartesian mapping and direct joint mapping approaches, achieving
successful outcomes in both precision grasp and power grasp tasks.

Human
Demonstration

Direct 
Cartesian 
Mapping 

Direct 
Joint 

Mapping 

Ours

Fig. 6. Methods compared on the precision grasp task (left) and power grasp task
(right).

5.3 Real-world Experiments

To further verify the system’s reliability, we conducted three physical experi-
ments in the real world. Two operators participated and were instructed to wear
the data glove, hand exoskeleton, and IMUs correctly. They then completed the
necessary calibration steps and warm-up exercises before engaging in teleopera-
tion tests.

1)Grasping tasks for 3D printed rigid objects: In this experiment, the robot
grasps the object standing upright on the table, lifts it to at least 5 cm above
the table, and holds it for at least 5 seconds, as shown in Fig.7.

2)Stacking blocks task: In this experiment, the robot first picks up the red
block and places it in the given position, then returns to the initial pose, picks
up the green block and stacks it on top of the red block, and finally repeats
the above process to stack the yellow block on top of the green block. This
teleoperation process is illustrated in Fig.8.
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Fig. 7. Grasping tasks for 3D printed rigid objects. Top row, left to right: bottle,
glasses, hammer, teapot, cell phone. Bottom row, left to right: wine glass, binoculars,
cleanser bottle, headphones, flashlight.

Fig. 8. Stacking blocks task. The teleoperation process is shown from left to right.

3)Grasping tasks for non-rigid objects: In this experiment, the robot deli-
cately grasps the flexible and deformable object from the table, lifting it to a
minimum height of 5 cm above the surface. Throughout the process, the robot
ensures that the object remains relatively free from significant deformation, as
demonstrated in Fig.9.

Fig. 9. Grasping tasks for non-rigid objects. Left to right: toy candle, dixie cup, yogurt
box, tissue, doll.

Fig. 10 displays the average success rates for each task, with each operator
performing the tasks five times within a three-minute time limit. Grasping rigid
3D printed objects requires precise control of the robot hand to achieve a rea-
sonable grasp posture, posing significant challenges. Failures in this task often
occur due to object pose changes resulting from collisions between the object
and the fingers. Notably, this phenomenon is more pronounced when grasping
objects such as glasses, hammers, and teapots. The stacking blocks task de-
mands accurate control of the robot arm to precisely stack blocks on top of
each other, given the small surface area of the blocks. Challenges in this task
include inaccurate stacking positions, arm shaking, and premature or delayed
release of objects, resulting in block slippage and task failure. When grasping
non-rigid objects, operators adjust their hand poses based on force feedback
from the hand exoskeleton to minimize object deformation during the process.
However, we observed that the effectiveness of the hand exoskeleton varied de-
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pending on the operator. When operators exhibited excessive resistance or were
unprepared for the force feedback, the hand exoskeleton proved ineffective or
even counterproductive.

Fig. 10. Success rate of teleoperation tasks.

6 Conclusion

This paper presents a framework for human-like dexterous manipulation via
teleoperation for the anthropomorphic hand-arm robotic system. Our framework
incorporates a wearable system comprising a data glove, three IMUs, and a hand
exoskeleton to capture human hand-arm motion and provide force feedback.
Additionally, we have developed an anthropomorphic robotic system consisting
of a robotic arm and a CASIA Hand equipped with force sensors at the fingertips
for executing operations. To enable seamless interaction, we have designed a set
of mapping algorithms for translating human motion to robot motion and robot
forces to human forces. Experiments conducted on the simulation platform and
real-world platform demonstrated the effectiveness and reliability of the system.

Future work involves incorporating virtual reality technology to provide vi-
sual feedback, enhancing the teleoperation experience for smoother control. Ad-
ditionally, there are plans to extend the teleoperation capabilities from a single
hand-arm robot to a dual hand-arm robot and delve into the realm of human-
robot fusion technology.
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